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Cytochrome bd is a cyanide-resistant terminal quinol oxidase under micro-aerophilic
growth conditions and generates a proton motive force via scalar protolytic
reactions. Protons used for dioxygen reduction are taken up from the cytoplasm
and delivered to haem d through a proton channel. Electrons are transferred from
quinols to haem d through haem b558 and haem b595. All three haems are bound to
subunit I but only the axial ligand of haem d remains to be determined. Haems b595

and d form a haem–haem binuclear centre and substitutions of either His19 in helix I
(haem b595 ligand) and Glu99 in helix III eliminated or severely reduced both haems.
To probe the location of the haem d ligand, we introduced mutations around His19
and Glu99 and examined the cyanide-resistance of the oxidase activity and spectro-
scopic properties. In contrast to mutations around His19, I98F and L101T reduced
the IC50 for cyanide to 0.18 and 0.41 mM, respectively, from 1.4 mM of the wild-type.
Blue shifts in the a peak of I98F suggest that Ile98 is in the vicinity of the haem
d-binding site. Our data are consistent with the proposal that Glu99 serves as a haem
d ligand of cytochrome bd.

Key words: axial ligand, cyanide, Escherichia coli, haem d, quinol oxidase.

Abbreviations: IC50, the 50% inhibitory concentration.

Cytochrome bd (CydAB) is one of two terminal ubiquinol
oxidases in the aerobic respiratory chain of Escherichia
coli and is predominantly expressed under micro-
aerophilic growth conditions (1–3). It catalyses dioxygen
reduction with two molecules of ubiquinol-8, leading to
the release of four protons from quinols to the periplasm.
Through a putative proton channel, four protons used for
dioxygen reduction are taken up from the cytoplasm and
delivered to the dioxygen reduction site at the periplas-
mic side of the cytoplasmic membrane (4). On the basis of
sequence analysis, Osborne and Gennis (5) suggested
that conserved Glu99 and Glu107 in helix III of subunit I
are part of such a proton channel. Recent mutagenesis
studies provided the supporting evidence (6–8). Thus,
cytochrome bd generates an electrochemical proton
gradient across the membrane through apparent vector-
ial translocation of four protons during dioxygen
reduction (9–11). In contrast to cytochrome bo
(CyoABCD), an alternative ubiquinol oxidase under
highly aerated growth conditions, cytochrome bd has no
proton pumping activity, and does not belong to the
haem–copper terminal oxidase superfamily. It should be
noted that alternative cytochrome bd(-II) (CyxAB) may
be expressed under conditions close to anaerobiosis (12)
but its physiological role remains obscure.

Cytochrome bd has been isolated as a heterodimeric
oxidase in E. coli (9, 13, 14) and is distributed from
archaea to eubacteria. On the basis of spectroscopic and
ligand binding studies, three distinct redox metal centres
have been identified as haem b558, haem b595 and haem d
(15). Unlike cytochrome bo, cytochrome bd does not
contain a tightly bound ubiquinone-8 and a copper ion.
Haem b558 is a low-spin protohaem IX and is ligated by
His186 (transmembrane helix V) and Met393 (helix VII)
of subunit I (CydA) (16, 17) (Fig. 1). Reduced haem b558

has absorption peaks at 428, 531 and 561 nm at room
temperature. Inhibitor binding studies indicate the
proximity of haem b558 to the quinol oxidation site
(18–20). Haem b595 is a high-spin protohaem IX bound to
His19 (helix I) of subunit I (16) and mediates electron
transfer from haem b558 to haem d (21–23), where
dioxygen is reduced to water. Reduced haem b595 shows
absorption peaks at 440, 560 and 596 nm. Haem d is a
high-spin chlorin and forms a dihaem binuclear centre
with haem b595 (24–26). Haem d shows the a peak at
630 nm in the fully reduced form and at 646 nm in the
air-oxidized, oxygenated form. Haem d has an extremely
high affinity for dioxygen (Km = 5 nM) (27) but is rather
insensitive to cyanide (IC50 = 2 mM) (9). Resonance
Raman studies (28, 29) indicated the axial ligand of
haem d would not be an ordinary histidine or cysteine
and is either a weakly coordinating protein donor or
a water molecule. Electron nuclear double resonance
studies (30) also suggested that haem d does not contain
a nitrogenous ligand. On the basis of effects of amino
acid substitutions on the haem binding, we postulated
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that Glu99 in helix III as a candidate for the haem d
ligand (6). When dioxygen binds, the axial ligand appar-
ently dissociates from haem d and remains off in the
formation of the oxoferryl state (29).

Topological analysis suggests that all the haems are
located at the periplasmic side of transmembrane helices
(4). Electron paramagnetic resonance studies indicate
that haem b558 and haem d are oriented with their haem
planes perpendicular to the membrane plane whereas
haem b595 is oriented with its haem plane at� 558 to the
membrane plane (31). Modeling the excitonic interactions
in both absorption and CD spectra yielded an estimate
of the Fe-to-Fe distance between haem b595 and haem
d of about 10 Å (32), allowing the formation of the haem–
haem binuclear centre.

To understand the energy transduction mechanism by
cytochrome bd, it is essential to identify the quinol

oxidation site (proton release site) at the periplasmic side
of the cytoplasmic membrane and the haem d-binding
site (proton uptake site) connecting to the cytoplasm
through the proton channel. In loop VI–VII (Q-loop)
of subunit I, binding of monoclonal antibodies to
252KLAAIEAEWET262 (33, 34) and proteolytic cleavage
with trypsin at Tyr290 or chymotrypsin at Arg298
(35, 36) suppressed ubiquinol oxidase activity (Fig. 1).
Photoaffinity labeling studies with azidoquinols identi-
fied that Glu280 is a part of the binding pocket for 2- and
3-methoxy groups on the ubiquinone ring (37). Site-
directed mutagenesis studies indicated that Lys252 and
Glu257 in the N-terminal region of loop VI–VII (20),
Glu445 and Arg448 in helix VIII and loop VIII-IX,
respectively, of subunit I (7, 38, 39) and Asp29 in loop
I-II of subunit II (7) participate in the quinol oxidation
site of cytochrome bd.

Fig. 1. Topological model of Escherichia coli cytochrome
bd [after Fig. 1 in (6)]. Fourteen invariant residues are
highlighted and highly conserved residues are indicated by

bold. Mutagenized residues are encircled and the epitope for
mAb was indicated by a broken box.
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In contrast to the quinol oxidation site, the haem d
ligand still remains to be determined. Fourteen strictly
conserved residues in cytochrome bd are all present in
subunit I (Fig. 1). Mutagenesis studies on the proton
channel in subunit I connecting haem d to the cytoplasm
identified that Glu99 and Glu107 in helix III are
essential for binding of the haem b595-d binuclear
centre and the enzyme activity (6–8). Further, Borisov
et al. (8) proposed that Glu107 is either the second
protonatabele group near the haem b595-d centre or a key
residue of the proton delivery channel. Based on the
phenotypic similarity to the haem b595 ligand, Mogi et al.
(6) proposed that the strictly conserved Glu99 might
serve as a haem d ligand. Cyanide, a well known
respiratory inhibitor, binds to the dioxygen-reducing
haem in terminal oxidases and is used to probe molecular
environments around the haem (15). To probe the
location of haem d, here we introduced mutations in
the vicinity of His19 (haem b595 ligand) in helix I and
Glu99 in helix III, and examined their effects on the
cyanide resistance. Our data are consistent with our
proposal that haem d is bound to Glu99 or nearby
amino acid residue (6).

EXPERIMENTAL PROCEDURES

Mutagenesis and Expression of Mutant Cytochrome
bd—Amino acid substitutions were introduced with
QuickChange XL (Stratagene) using pNG2 (cyd+ TetR)
(40) and synthetic oligonucleotides, as described pre-
viously (6, 20). Mutations were confirmed by DNA
sequencing and mutant plasmids were introduced into
E. coli quinol oxidase double deletion mutant ST4683
(�cyo::CmR �cyd::KmR) by anaerobic transformation
(6, 20).

Isolation of Mutant Membranes—Escherichia coli
ST4683 harbouring the mutant pNG2 was aerobically
grown overnight in IM medium (41) supplemented with
0.5% glucose, 12.5 mg/ml tetracycline and trace metals (6,
20). Cells were suspended in 50 mM Tris–HCl (pH 7.4)
containing 10 mM Na–EDTA, 1 mM phenylmethanelsul-
fonyl fluoride (Sigma) and 0.5 mg/ml lysozyme (Sigma)
and disrupted by sonication. After removal of unbroken
cells, cytoplasmic membranes were isolated as described
previously (6, 20).

Determination of haem and Protein Content—Haem B
content was determined by the pyridine hemochromogen
method, and haem d content was estimated from redox
difference spectra using a molar extinction coefficient
of e628–651 = 27,900 (42). Protein concentration was deter-
mined by BCA method (Pierce).

Absorption Spectroscopy—Absorption spectra of the
air-oxidized and Na-hydrosulfite-reduced forms of
mutant enzymes were determined with a V-550 UV/Vis
spectrophotometer (JASCO, Tokyo, Japan) at a final
concentration of 10 mM in 50 mM Na-phosphate (pH 7.4)
containing 0.1% sucrose monolaurate (Mitsubishi-
Kagaku Foods Co., Tokyo).

Quinol Oxidase Assay—Quinol oxidase activity was
determined at 258C by monitoring the absorbance change
at 278 nm and calculated using a molar extinction

coefficient of 12,300 (43). The reaction mixture (1 ml)
contained 50 mM Na-phosphate (pH 7.4), 0.1% sucrose
monolaurate, and membranes. The reaction was started
by the addition of a reduced form of ubiquinone-1, a kind
gift from Eisai Co. (Tokyo, Japan), at a final concentra-
tion of 200 mM.

Dose Response and Kinetic Analysis—Duplicate assay
was performed at each concentration and dose–response
data were analysed by the non-linear curve fitting
with Kaleidagraph version 3.5 (Synergy Software).
The 50% inhibitory concentration (IC50) values were
estimated as in ref. (44). Enzyme kinetic was analysed by
assuming the ping-pong bi–bi mechanism for cytochrome
bd (45).

Sequence Analysis—Alignments of amino acid
sequences of subunit I were done with ClustalX 2.0 (46).

RESULTS

Rational for Mutational Analysis of the Haem
d-binding Site—Previous mutagenesis studies showed
that substitutions of His19 in helix I (the haem b595

ligand) (16) and Glu99 in helix III (a putative haem d
ligand) (6, 7) eliminated or severely reduced the haem
b595-d binuclear centre, likely due to the close proximity
of two high-spin haems (24–26, 32). Cyanide is known to
bind to the dioxygen-reducing haem in terminal oxidases
and is used to probe molecular environments around
the haem (15). However, in such mutants, the cyanide-
resistant oxidase activity and the cyanide-binding to
haem d cannot be studied. To probe indirectly the
location of the haem d ligand, we designed to find
mutations which affect the cyanide-resistance oxidase
activity. Sequence analysis (47) on subunit I of cyto-
chrome bd and cyanide-insensitive oxidase (CioAB),
which does not show the typical absorption peaks of
haems b595 and d in the reduced state (48–50), revealed
the presence of characteristic features around the haem
b595-d binding sites in subunit I (CydA/CioA). The haem
b595 ligand, His19 (the E. coli CydA numbering) in helix
I, is followed by ‘x3VP’ in CydA and by ‘x3PA/V’ in CioA
while a putative haem d ligand, Glu99 in helix III, is
preceded by ‘Px3’ in CydA and by ‘P(/T or S)x4’ in CioA
(Fig. 2). These features may be also responsible for the
difference in the cyanide resistance, the IC50 values of
the E. coli and cyanobacterial cytochrome bd (9, 47)
being 10-fold smaller than those of Pseudomonas
aeruginosa (48) and Gluconobacter oxydans CioAB
(T.M. and K. Matsushita, unpublished results). To
explore structural requirements around His19 in helix
I, we constructed the F20I single mutant and L14M/
M17L and V23P/P24V double mutants. The F20I
and L14M/M17L mutants were constructed to mimic
P. aeruginosa CioAB and Azotobacter vinelandii
cytochrome bd, respectively. Azotobacter vinelandii cyto-
chrome bd has been reported to have the low dioxygen
binding affinity (Km = 4.5 mM) (51). V23P/P24V was made
to mimic CioAB and cyanobacterial cytochrome bd, which
has been reported to have a medium dioxygen-binding
affinity (Km = 0.35 mM) (52), by changing the location
of proline near the haem b595 ligand. To probe the

CN-binding Site of Cytochrome bd Quinol Oxidase 765

Vol. 145, No. 6, 2009

 at Islam
ic A

zad U
niversity on Septem

ber 28, 2012
http://jb.oxfordjournals.org/

D
ow

nloaded from
 

http://jb.oxfordjournals.org/


structural requirements around Glu99, we constructed
I98F, L101T, M102T and S108A mutants because Ile98 is
substituted by Tyr in P. aeruginosa CioA and by Phe in
Synechocystis CydA, Leu101 by Thr in Synechocystis
CydA, Met102 by Thr, and Ser108 by Ala in
P. aeruginosa CioA. We found that all the mutations on
plasmid pNG2 complemented a defect of the aerobic
growth of the oxidase-deficient mutant ST4683 (�cyo
�cyd), indicating that these amino acid residues are not
essential for the catalytic function.

Effects of Mutations Around His19—We over-expressed
mutant cytochrome bd in the cytochrome bo and bd
double deletion mutant and isolated cytoplasmic
membranes, where mutant enzymes can be analysed as
a dominant cytochrome species. Since cytochrome bd
binds two b-haems and one haem d, the content of the
co-existing b-haem (s) (i.e. haem b556 in succinate
dehydrogenase) in the membranes is about 0.3 nmol/mg
protein. We found that the L14M/M17L mutation did not
affect the haem d binding (cf. haem d/haem b =� 0.46 in
the wild-type), the ubiquinol-1 oxidase activity and its
cyanide resistance (Table 1). In contrast, the F20I and
V23P/P24V mutations reduced the haem d/haem b ratio
and the oxidase activity but slightly increased the
cyanide resistance. However, dose–response analysis
showed that the IC50 values of mutant enzymes for
KCN (1.2 mM in L14M/M17L, 1.2 mM in F20I and
2.1 mM in V23P/P24V) (data not shown) were comparable
to 1.4 mM of the wild-type cytochrome bd (Fig. 3).

Spectroscopic analysis of the F20I mutant membrane
showed that the a peak of haem d was blue shifted to
643 and 626 nm at the air-oxidized (Fed

2+-O2) and fully

reduced (Fed
2+) forms, respectively, from 646 and 628 nm

of the wild-type enzyme (Fig. 4). The second-order finite
difference spectrum of the reduced form was split into
428 (haem b558) and 439 (haem b595) nm at room
temperature and the intensity of the latter peak
indicated that the F20I also reduced the haem b595

binding (Fig. 4B, inset).
Effects of Mutations Around Glu99—All the I98F,

L101T, M102T and S108A mutations did not affect the

Fig. 2. Sequence alignments of the haem b595- and
d-binding sites of the CydA/CioA family proteins. CydA
sequences (GenBank accession no.) used are E. coli (NP_415261),
A. vinelandii (ZP_00418656), Burkholderia bronchiseptica
(NP_891032), Agrobacterium tumefaciens (NP_356555),
Geobacter sulfurreducens (NP_952691), Campylobacter jejuni
(NP_281294), Bacillus subtilis (NP_391755) and Mycobacterium
tuberculosis (NP_336115). (B) CioA sequences used are
P. aeruginosa (NP_252619), A. vinelandii (ZP_00418266), B.
pseudomallei (YP_001074378) and Gluconobacter oxydans

(YP_190717). (C) Cyanobacterial CydA sequences used are
Synechocystis sp. PCC 6803 (NP_440505), Thermosynechococcus
elongates (NP_682392), Gloeobacter violaceus sp. PCC 7421
(NP_924143) and Anabaena variabilis (YP_320076). For the
clarity, only the helix I and helix III sequences around His19
(the haem b595 ligand) and Glu99 (a putative haem d ligand),
respectively, are shown. Mutations introduced and amino acid
residues characteristic in these segments are indicated above or
below sequences.

Table 1. Haem contents and the cyanide resistance of
the oxidase activity in mutant membranes.

Mutant Haem content
(nmol/mg protein)a

Oxidase
activitya

Haem
b

Haem
d

Haem d/
haem b

None + KCN

Wild-type 4.38 2.01 0.46 100%b 33%c

L14M/M17L 5.05 2.42 0.48 107 28
F20I 5.31 2.07 0.39 79 48
V23P/P24V 5.24 1.93 0.37 93 42
I98F 4.46 1.92 0.43 88 4.4
E99Ld 4.85 < 0.01 < 0.01 3.3 NTe

L101T 6.60 2.97 0.45 83 20
M102T 4.75 2.23 0.47 71 25
E107Ld 5.03 0.98 0.19 4.0 NTe

S108A 5.52 2.59 0.47 77 48
aAverage values from two independent preparations. bThe control
(wild-type) activity was 1062 ubiquinol-1/s/haem b (491 ubiquinol-1/
s/haem d) at 200mM ubiquinol-1. cPercentage of residual activity in
the presence of 2mM KCN dTaken from (6). eNot tested in (6).
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haem d binding but reduced the oxidase activity to about
80% (Table 1). Notably, the substitutions of Ile98 and
Leu101 adjacent to Glu99, a putative haem d ligand (6),
both reduced the cyanide resistance of the oxidase
activity to 4.4 and 20%, respectively, from 33% of the
wild-type membranes at 2 mM KCN. Dose–response

analysis showed that the IC50 values of the I98F and
L101T mutants for KCN were reduced 0.18 and 0.41 mM,
respectively, from 1.4 mM of the wild-type enzyme
(Fig. 3). In the I98F membranes, the mutation did not
affect the haem b595 binding but caused the blue-shifts
in the a peak of haem d to 645 and 626 nm in the
air-oxidized and fully reduced forms, respectively, indi-
cating the perturbation in the haem d binding site
(Fig. 4D).

DISCUSSION

Location of the Haem d Ligand—Cytochrome bd quinol
oxidase does not pump protons but generates the proton
motive force by scalar protolytic reactions. To understand
such a unique energy transduction mechanism, it is
essential to identify the proton release site (quinol
oxidation site) at the periplasmic side of the cytoplasmic
membrane and the proton uptake site (haem d-binding
site), which is connected to the cytoplasm. Biochemical
and mutagenesis studies (7, 20, 33–39) indicate that the
N-terminal regions of loop VI–VII and VIII–IX in subunit
I and of loop I–II in subunit II are involved in the binding
and oxidation of quinols. Biophysical and mutagenesis
(6–8, 11) studies suggest that Glu99 and Glu107 in helix
III are involved in the proton uptake channel, which
delivers protons to haem d for the dioxygen reduction.
Among missense mutants constructed, the His19 and
Glu99 mutants showed the severe phenotype, the
absence of the haem b595-d binuclear centre. His19 has
been assigned as the axial ligand of haem b595 (6, 7, 16),
while Glu99 was recently proposed as a ligand to haem
d (6). Spectroscopic and mutagenesis studies suggest

Fig. 3. Effect of cyanide on ubiquinol oxidase activity of
mutant membranes. Ubiquinol oxidase activity of the mutant
membranes was measured in the presence of KCN and 0.2 mM
ubiquinol-1. The IC50 values for KCN were determined to be
1.4� 0.1 mM for the wild-type (closed circle), 0.18� 0.01 mM for
I98F (closed triangle), 0.41� 0.02 mM for L101T (open circle)
and 1.3� 0.1 mM for M102T (open triangle).

Fig. 4. Absorption spectra of the air-oxidized and fully
reduced forms of mutant membranes. Absolute spectra of the
isolated membranes were recorded in 50 mM sodium phosphate
(pH 7.4) containing 0.1% sucrose monolaurate before (broken

line) and after reduction (solid line) with Na-hydrosulfite. The
enzyme concentration was 20mM haem B. Inset indicates the
second-order finite difference spectrum of the Soret peak.
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that the axial ligand of haem d would not be His, Cys,
Met or Arg (6, 7, 16, 28–30) and is either weakly
coordinating protein donor like carboxylates or a water
molecule (28).

To probe the location of haem d ligand by avoiding the
deficiency of the haem b595-d binuclear centre in the
mutant enzymes, here we used the cyanide-resistance
of the oxidase activity, a unique property of cytochrome
bd (1–3), as a probe for the identification of the haem
d-binding site. We introduced amino acid substitutions
around His19 in helix I and Glu99 in helix III and
examined their effects on the cyanide-resistant quinol
oxidase activity, one of unique properties of haem d. As
expected, the Phe substitution of Ile20 next to His19
resulted in the perturbation of the haem b595-d binuclear
centre. Although the Synechocystis plasoquinol oxidase
has been reported to be a cyanide-resistant oxidase (47)
(Fig. 2), the substitutions of Ile98 by Phe and of Leu101
by Thr, which could convert E. coli cytochrome bd to
a cyanobacteria-type oxidase at some extent, rather
reduced the cyanide resistance of the oxidase activity.
Since the substitutions of Met17 and Phe20 around
His19 (the haem b595 ligand) did not affect the cyanide
resistance, Ile98 and Leu101 are likely in the vicinity of
the cyanide-binding haem d. These observations provide
an indirect support for our proposal that Glu99 serves as
a weakly coordinating ligand to haem d. The micro-
environment around the haem d ligand and/or the
structure of the haem b595-d binding site adjusted
by side chains of nearby amino acid residues appear
crucial for the cyanide-resistant oxidase activity of
cytochrome bd.

Fourier transform infrared studies on cytochrome bd
revealed redox-induced hydrogen bond changes in three
protonated carboxylate residues (53). The proximity of
Glu99 and Glu107 in helix III and Glu445 in helix VIII
to the haem b595-d binuclear centre indicates that they
are likely candidates for the redox-sensitive carboxy
residues. Recent FTIR studies identified Glu107 as one of
the protonated carboxylate residues (+ 1738/�1753 cm�1),
which undergo environmental changes upon the reduc-
tion of the haem b595-d binuclear centre (7). Borisov et al.
(8) and Belevich et al. (39) identified Glu445 in loop VIII-
IX as the redox-linked protonatable group required for
charge compensation of the haem b595-d binuclear centre.
Glu99 is located near the end of proton channel and must
be closed to haem d, the dioxygen reduction site.
CN-sensitive high wave number infrared species
(+ 1761/�1751 cm�1) is assumed to be buried in a
non-polar environment (53) and may be originated
from Glu99.

Dioxygen Binding Affinity of Haem d—By monitoring
the deoxygenation of myoglobin and leghemoglobin,
D’Mello et al. (27, 51) estimated the Km(O2) value of
cytochrome bd from E. coli (5 nM) and A. vinelandii
(4.5 mM). Accordingly, E. coli CydAB can serve as a high-
affinity oxidase under nanoaerobic conditions in host
intestine. A. vinelandii is an obligate aerobe and carries
out nitrogen fixation under aerobic conditions. Although
A. vinelandii CydAB is assumed to be a low-affinity
oxidase, it must function as an efficient terminal oxidase
for the respiratory protection of nitrogenase. Recently,

Belevich et al. (54, 55) determined the Kd(O2) by
flow-flash experiments with the air-oxidized enzymes
(one-electron reduced oxygenated forms; b558

3+, b595
3+,

d2+=O2) to be 0.3 and 0.5mM for E. coli and A. vinelandii
oxidases, respectively. The authors concluded that both
oxidases have similar, high affinity for dioxygen. The
assumption that Km = Kd is not always correct (56) and
previous analysis (27, 51) may have yielded misleading
estimates. From the sequence comparison of the CydA/
CioA proteins, we identified two amino acid differences
in the haem b595-binding site between E. coli and
A. vinelandii CydA and we found the wild-type
phenotypes in the E. coli L14M/M17L mutant.
Although the Kd(O2) of this mutant needs to be tested
in future studies, such amino acid differences would not
affect the ligand-binding properties of cytochrome bd.

It is now recognized that cytochrome bd is involved
in the survival and growth of strict anaerobes under
nanoaerobic conditions (57–59) and in the virulence and
survival of pathogenic bacteria in host mammalian cells
(60–62). A high-affinity oxidase of the pathogenic bacte-
ria has an advantage in the utilization of dioxygen in
hypoxic host environments and the resistance of the
bacterial oxidase against nitric oxide can evade one
of the host defense systems. Further, the pathogenic
bacteria expressing the cyanide-resistance oxidase can
compete the niche against HCN-secreting bacteria like
P. aeruginosa (63). We hope that future X-ray crystal-
lographic studies would provide a clue for understanding
the unique enzymatic and spectroscopic properties of
cytochrome bd, which plays a crucial role in the
virulence of the pathogenic bacteria.
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